Solar Tarp – foldable, portable solar power.

California based Lipomi Research Group are working on creating a solar tarp – which would have myriad uses for society. Let’s learn more about how these upgraded solar panels could help parts of the world where they don’t have access to regular electricity – and some of the technological challenges they’re facing trying to complete the project.

About the Solar Tarp technology

Prototype Solar Tarp Sample - University of California
Prototype Solar Tarp Sample – University of California (source: theconversation.com)

The Lipomi Research Group are focused on “identifying ways to create materials with both good semiconducting properties and the durability plastics are known for – whether flexible or not”.  They’ve been tinkering with perovskite solar cells, which are 1/1000 the thickness of a silicon layer in a solar panel. 

Darren Lipomi of the Lipomi Group, who is also a Professor of Nanoengineering at the University of California, said that their goal is to create flexible solar panels which are as efficient as conventional silicon but don’t have some of the drawbacks of it.

The goal is to develop flexible solar panels which are thin, lightweight, and bendable. Lipomi is calling their idea a ‘solar tarp’ – which refers to a solar panel which can be expanded to the ‘size of a room’, but balled up to the size of a grapefruit when not in use. The issues here are finding a molecular structure to make the solar panels stretchable and tough – this involves replacing the silicon semiconductors with materials such as perovskite. 

They’re also taking a look at polymer semiconductors / organic semiconductors (based on carbon, and used in place of perovskites or silicon in a solar cell). These aren’t as efficient, but are far more flexible and extremely durable.

According to The Conversation, the sunlight that hits the earth in a single hour contains more energy than the whole planet uses in an entire year – so there’s plenty more work to do on improving how we utilise the sun! We’ll keep an eye on the solar tarp project and let you know when it reaches the next stage.

Read More Solar News:

ClearVue Technologies Solar Glass/Windows IPO

Western Australian solar glass company ClearVue Technologies are preparing to float on the ASX – in order to raise capital to sell their solar power generating glass windows globally. They’ve developed the tech in conjunction with the Electron Science Research Institute (ESRI) at Edith Cowan University. 

ClearVue Technologies

According to an interview with Finance News Network, ClearVue’s executive chairman Victor Rosenberg said the company is currently in the pre-development stage and are hoping to commence manufacturing the windows within the next 8 weeks.  They have a manufacturing partner in China called ROCKY Glass who will be making the windows to start, then they will licence the product worldwide, gaining income from both licensing and royalties. 

The ClearVue website have discussed their plans for the future: “Our technology presents a paradigm shift in the way glass will be used in building construction, automobiles, agriculture and speciality products”. 

ClearVue, founded in 1995, have lodged with ASIC to apply for 25,000,000 Shares at an issue price of $0.20 per Share to raise $5,000,000. Click here to download their prospectus and apply for shares online if you’re interested in their IPO. 

Solar Windows and Solar Glass

ClearVue Technologies Solar Glass and Windows
ClearVue Technologies Solar Glass and Windows (source: http://www.clearvuepv.com/)

ClearVue Technologies’ current offering is a patented nano technology – using BIPV (Building-Integrated Photovoltaic). Unlike most of their competitors the window remains clear, and the solar glass also “allows the visible light to pass through up to 70 per cent and it rejects the infrared and the UV from penetrating the room”. 

“Nobody actually has got clear glass,” said Rosenberg in an interview last year.  “They’ve got either lines or they’ve got dots, or looks like a chessboard with squares of solar panels on the glass.

“We are today, I would proudly say, the only commercial-size clear glass super building material producer.”

The windows currently generate 30W per square metre whilst simultaneously insulating and providing UV control. They’re hoping to reach 50W per square metre as they improve the BIPV technology. 

We’ve written quite extensively on solar windows – with technology such as perovskite solar cells and inkjet printed solar cells using Cyanobacteria among the more interesting ideas. There’s no doubt that this will be a huge market and there are quite a lot of competitors jostling to bring the best technology to market, so it’ll be exciting to see what happens!

Read More Solar News:

Greatcell Get $6m Perovskite Solar Cell research.

Greatcell Solar has been awarded a grant by ARENA (Australian Renewable Energy Agency) to continue their research into producing perovskite cells for solar power generation. We’ve written about perovskite solar cells a few times this year – with the technology showing great potential and shaping up as an inexpensive alternative to conventional silicon cell technology. 

Greatcell and Perovskite

Queanbeyan-based Greatcell, formerly Dyesol, will spend $17.3m on developing a world-class plant which will scale up their manufacturing capability of high quality, large-area perovskite devices. ARENA will fund $6m of the project following a successful previous grant of $450,000 to continue work on the technology.   

ARENA CEO Ivor Frischknecht released a statement on Tuesday about the second grant: 

“This has the potential to expand the applications for which solar can be used and to reduce costs,” Frischknecht said.

“We want to move perovskites closer towards commercialisation. This will help accelerate solar PV innovation in Australia, which is one of our key priorities.”

Greatcell Solar MD Richard Caldwell told RenewEconomy that they are confident in the long-term viability of perovskite in practical situations in the near future: 

“It has the compelling attributes of lower cost and greater versatility than existing PV technologies. In particular, it is suited to real world solar conditions,” 

“In the long term, this technology has the potential to provide a cost competitive and clean energy solution,” Caldwell was quoted as saying. 

Greatcell and Jinko Solar

Greatcell signed an MoU (Memorandum of Understanding) with Jinko Solar earlier this year, which gives Jinko access to Greatcell’s perovskite solar technology. Their goal is to partner up and start manufacturing and selling perovskite-based solar on a large scale. 

Perovskite solar cells and Guanidinium

Greatcell Perovskite Solar Cells
Greatcell Solar Research into Perovskite (source: wikipedia.org)

According to Nature Energy, there’s been another breakthrough with the perovskite cells – incorporating the large organic cation guanidinium (CH6N3+) into methylammonium lead iodide perovskites has helped improving the stability of the perovskites (which are prone to decomposing over time – one of the main problems researchers are facing). 

With the addition of the guanidinium, perovskite solar cells are already working at 19% efficiency for 1000 hours under full-sunlight testing conditions – with silicon solar cells plateauing at around 25% due to the Shockley-Queisser limit. For that reason, we’re pouring money into finding an alternative to silicon solar cells – and it looks like perovskite has the potential to take over. Exciting times – watch this space and we’ll continue following the research and keeping you updated! 

 

Read More Solar News:

Silicon Alternative for Solar Cells

Researchers from the University of Cambridge in the United Kingdom and MIT, the National Renewable Energy Laboratory and Colorado School of Mines in the USA have been hard at work coming up with a silicon alternative for solar cells – given that silicon needs to have extremely high levels of purity and as such is very energy intensive to produce. After looking at options such as perovskite solar cells, the team have been using the “green element”, bismuth, in tests to create a low-cost solar cell.

Silicon Alternative for Solar Cells  – Research

The vast majority of solar cells we see on rooftops or as part of solar farms are created from silicon – a very efficient element in terms of its ability to convert light into energy, but also, as mentioned, expensive (and energy intensive) to produce.

There has been a lot of research on perovskite solar cells as a possible alternative, which we have reported on previously. Since lead is an integral part of the perovskite cell’s chemical structure, there’s still a search for a cheap, non-toxic material to create these cells – enter Bismuth.

Bismuth - A Silicon Alternative for Solar Cells
Bismuth – A Silicon Alternative for Solar Cells (source: Steve Penny, University of Cambridge via ScienceDaily.com)

According to ScienceDaily, Bismuth is a heavy metal like lead, but it is non toxic. Previous tests of Bismuth oxyiodide indicated that its efficiency may be too low for solar and it was also easily degraded in liquid electrolytes. However, further research has shown it may in fact be a suitable replacement for silicon in that it’s inexpensive to produce, can be very efficient in converting light into energy, and is eco-friendly.

“Bismuth oxyiodide has all the right physical property attributes for new, highly efficient light absorbers,” said co-author Professor Judith Driscoll, of the Department of Materials Science and Metallurgy. “I first thought of this compound around five years ago, but it took the highly specialised experimental and theoretical skills of a large team for us to prove that this material has real practical potential.”

We’ll see how this exciting research progresses – but in the meantime if you want to read about the study in detail you can find this journal: Strongly Enhanced Photovoltaic Performance and Defect Physics of Air-Stable Bismuth Oxyiodide (BiOI)Advanced Materials, 2017; 1702176 DOI

Read More Solar News:

Perovskite Solar Cell Efficiency

Perovskite solar cell research is continuing at a fantastic rate, with the March issue of academic journal Science reporting that a collaboration between UNIST (Ulsan National Institute of Science and Technology) and the Korean Research Institute of Chemical Technology (KRICT) was able to reach 21.2% efficiency with a hybrid organic/inorganic perovskite solar cell.

Perovskite (wiki), a raw material which can be used to harvest solar energy and can be combined with liquid solutions to allow broad application (i.e. the conventional rigid shape of the solar panel could be superseded by something like a ‘spray’ application of a perovskite-based solution), is paving the way for solar technology. Researchers at the ANU (Australian National University) have achieved 26.4% efficiency using a stacked configuration of silicon and perovskite solar cells. The Duong from ANU’s Research School of Engineering heralded the achievement as ‘…a step closer to a low-cost alternative (to silicon based cells)’. It’s important to note that this efficiency was created ANU’s cell size was 0.18cm² (a research size – far from commercially viable). UNSW achieved 12% efficiency for a ‘full size’ 16cm² solar cell last December. Solliance, a Dutch/German/Belgian R&D team, achieved 12.6% in R2R (roll to roll) perovskite solar cells in March.

Perovskite Solar
Perovskite (image: Wikipedia.com)

Although still a far way from the 26.3% efficiency achieved by the Kaneka Corporation using silicon solar panels, it’s important to note that due to the Shockley-Queisser limit silicon panels will never reach greater than 1/3 efficiency. Using perovskite to manufacture solar cells could potentially double this limit – with the added bonus of being inexpensive and using less energy to manufacture. The hybrid organic/inorganic perovskite solar cell discussed at the start of this article (iodine/lead/methyl-ammonium crystalline structure) boosts the efficiency of the panel so that it can carry 2/3 of the energy from light without losing so much to heat.

The fact that this compound can also be applied through myriad techniques such as spraying, dipping, printing, and doctor-blading means that it has a much wider range of application. ‘Solar cells are no longer limited to rigid structures such as panels’, says Dr Anita Ho-baillie, head of Perovskite Solar Cell Research at the Australian Centre for Advanced Photovoltaics (ACAP) at UNSW.

Perovskite’s potential in terms of solar cells was first discovered by Japanese researchers in 2006 and Dr Ho-Baillie says she thinks perovskite solar cell efficiency will be able to reach 24% by the end of the year. There’s still a long way to go for perovskite to surpass silicon as the material of choice for solar cells, but progress is steady and as soon as they break the ‘magical’ 30% barrier it’ll become the material of choice for solar panels, if not before.

 

Read More Solar News: