Solar Tarp – foldable, portable solar power.

California based Lipomi Research Group are working on creating a solar tarp – which would have myriad uses for society. Let’s learn more about how these upgraded solar panels could help parts of the world where they don’t have access to regular electricity – and some of the technological challenges they’re facing trying to complete the project.

About the Solar Tarp technology

Prototype Solar Tarp Sample - University of California
Prototype Solar Tarp Sample – University of California (source: theconversation.com)

The Lipomi Research Group are focused on “identifying ways to create materials with both good semiconducting properties and the durability plastics are known for – whether flexible or not”.  They’ve been tinkering with perovskite solar cells, which are 1/1000 the thickness of a silicon layer in a solar panel. 

Darren Lipomi of the Lipomi Group, who is also a Professor of Nanoengineering at the University of California, said that their goal is to create flexible solar panels which are as efficient as conventional silicon but don’t have some of the drawbacks of it.

The goal is to develop flexible solar panels which are thin, lightweight, and bendable. Lipomi is calling their idea a ‘solar tarp’ – which refers to a solar panel which can be expanded to the ‘size of a room’, but balled up to the size of a grapefruit when not in use. The issues here are finding a molecular structure to make the solar panels stretchable and tough – this involves replacing the silicon semiconductors with materials such as perovskite. 

They’re also taking a look at polymer semiconductors / organic semiconductors (based on carbon, and used in place of perovskites or silicon in a solar cell). These aren’t as efficient, but are far more flexible and extremely durable.

According to The Conversation, the sunlight that hits the earth in a single hour contains more energy than the whole planet uses in an entire year – so there’s plenty more work to do on improving how we utilise the sun! We’ll keep an eye on the solar tarp project and let you know when it reaches the next stage.

Read More Solar News:

ClearVue Technologies Solar Glass/Windows IPO

Western Australian solar glass company ClearVue Technologies are preparing to float on the ASX – in order to raise capital to sell their solar power generating glass windows globally. They’ve developed the tech in conjunction with the Electron Science Research Institute (ESRI) at Edith Cowan University. 

ClearVue Technologies

According to an interview with Finance News Network, ClearVue’s executive chairman Victor Rosenberg said the company is currently in the pre-development stage and are hoping to commence manufacturing the windows within the next 8 weeks.  They have a manufacturing partner in China called ROCKY Glass who will be making the windows to start, then they will licence the product worldwide, gaining income from both licensing and royalties. 

The ClearVue website have discussed their plans for the future: “Our technology presents a paradigm shift in the way glass will be used in building construction, automobiles, agriculture and speciality products”. 

ClearVue, founded in 1995, have lodged with ASIC to apply for 25,000,000 Shares at an issue price of $0.20 per Share to raise $5,000,000. Click here to download their prospectus and apply for shares online if you’re interested in their IPO. 

Solar Windows and Solar Glass

ClearVue Technologies Solar Glass and Windows
ClearVue Technologies Solar Glass and Windows (source: http://www.clearvuepv.com/)

ClearVue Technologies’ current offering is a patented nano technology – using BIPV (Building-Integrated Photovoltaic). Unlike most of their competitors the window remains clear, and the solar glass also “allows the visible light to pass through up to 70 per cent and it rejects the infrared and the UV from penetrating the room”. 

“Nobody actually has got clear glass,” said Rosenberg in an interview last year.  “They’ve got either lines or they’ve got dots, or looks like a chessboard with squares of solar panels on the glass.

“We are today, I would proudly say, the only commercial-size clear glass super building material producer.”

The windows currently generate 30W per square metre whilst simultaneously insulating and providing UV control. They’re hoping to reach 50W per square metre as they improve the BIPV technology. 

We’ve written quite extensively on solar windows – with technology such as perovskite solar cells and inkjet printed solar cells using Cyanobacteria among the more interesting ideas. There’s no doubt that this will be a huge market and there are quite a lot of competitors jostling to bring the best technology to market, so it’ll be exciting to see what happens!

Read More Solar News:

Perovskite Degradation – Major Breakthrough

Scientists the world over have been trying to create inexpensive, highly efficient solar cells out of perovskite, and this week some new research has come out which moves us another step in that direction. Perovskite degradation occurs rapidly when the naturally occurring mineral exposed to ambient air, which is quite the issue for a solar cell. According to the NREL team,Researchers at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) have manufactured an environmentally stable, high-efficiency perovskite solar cell. Another step closer to commercial sale of perovskite solar cells!

Perovskite Degradation and the NREL Research

Perovskite Degradation
Perovskite Degradation (source: wikipedia.org)

CleanTechnica have written an article about the NREL Research on perovskite deterioration in ambient air and are reporting that the research team have successfully tested a perovskite solar cell in ambient conditions with no protection for 1,000 hours – with a fantastic result that 94% of conversion efficiency was retained.

The scope of the research is a little over our head, but if you’re interested in learning more about the study “Tailored Interfaces of Unencapsulated Perovskite Solar Cells for >1000 Hours of Ambient Operational Stability you can click the link to read about it via Nature magazine. 

In simplest form, previous methods of protecting the perovskite have focused on creating a protective enclosure around the solar cell. Instead of that, they focused on the ‘weakest link’ in a perovskite solar cell and replaced it with a different molecule.

“Each interface and contact layer throughout the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed.”

Perovskite research is moving along at a fantastic clip. Here are some other updates on this technology we’re really excited about:

 

 

 

Read More Solar News:

Perovskite Solar Panels Rolled Out (Saule/Skanska)

Poland based Saule Technologies have signed a distribution agreement with the Skanska group to roll out perovskite solar panels in 2018. This is the first company to bring the technology to market and it’s an exciting step forward for alternatives to the efficiency limited (read about the Shockley-Queisser limit) conventional silicon based solar panels.

Saule Technologies and Perovskite Solar Panels

Perovskite Solar Panels - Saule Technologies and Skanska Group in Poland
Perovskite Solar Panels – Saule Technologies and Skanska Group in Poland (source: skanska.pl)

We’ve previously written about research into perovskite solar cells and Greatcell’s $6m grant towards Perovskite Solar Cell research. But this is the first time they’ve been offered to the public – so it’s a huge step forward for the technology.

Saule Technologies are a Warsaw based start-up who will partner with multinational project development and construction firm Skanska AB to bring the semi-transparent perovskite solar modules to commercial office buildings. According to PV Tech, the first panels will be installed on office buildings in Poland later this year. 

On a press release on their website, Skanska said they have over €20 million in grants for their research and are currently building large-scale, prototype production line. They have been “working on the application of ink-jet printing for fabricating free-form perovskite solar modules since 2014”, so it’s exciting to see their research enter the next phase. 

“It is not a science-fiction vision anymore. Working with talented scientists from Saule, we are now turning fiction into reality and creating buildings which are more energy efficient and carbon neutral. Up to now this has not been possible on a large scale. Climate change is one of the biggest challenges the modern world is facing and it contributes to extreme weather events that are increasing in frequency and severity around the world. As such there is increasing legislative pressure to run businesses in a sustainable and attentive manner,” said Katarzyna Zawodna, CEO of Skanska’s commercial development business in CEE.

View the video below to learn more about manufacturing perovskite solar panels and the ink-jet printing/crystallization process:

Read More Solar News:

Greatcell Get $6m Perovskite Solar Cell research.

Greatcell Solar has been awarded a grant by ARENA (Australian Renewable Energy Agency) to continue their research into producing perovskite cells for solar power generation. We’ve written about perovskite solar cells a few times this year – with the technology showing great potential and shaping up as an inexpensive alternative to conventional silicon cell technology. 

Greatcell and Perovskite

Queanbeyan-based Greatcell, formerly Dyesol, will spend $17.3m on developing a world-class plant which will scale up their manufacturing capability of high quality, large-area perovskite devices. ARENA will fund $6m of the project following a successful previous grant of $450,000 to continue work on the technology.   

ARENA CEO Ivor Frischknecht released a statement on Tuesday about the second grant: 

“This has the potential to expand the applications for which solar can be used and to reduce costs,” Frischknecht said.

“We want to move perovskites closer towards commercialisation. This will help accelerate solar PV innovation in Australia, which is one of our key priorities.”

Greatcell Solar MD Richard Caldwell told RenewEconomy that they are confident in the long-term viability of perovskite in practical situations in the near future: 

“It has the compelling attributes of lower cost and greater versatility than existing PV technologies. In particular, it is suited to real world solar conditions,” 

“In the long term, this technology has the potential to provide a cost competitive and clean energy solution,” Caldwell was quoted as saying. 

Greatcell and Jinko Solar

Greatcell signed an MoU (Memorandum of Understanding) with Jinko Solar earlier this year, which gives Jinko access to Greatcell’s perovskite solar technology. Their goal is to partner up and start manufacturing and selling perovskite-based solar on a large scale. 

Perovskite solar cells and Guanidinium

Greatcell Perovskite Solar Cells
Greatcell Solar Research into Perovskite (source: wikipedia.org)

According to Nature Energy, there’s been another breakthrough with the perovskite cells – incorporating the large organic cation guanidinium (CH6N3+) into methylammonium lead iodide perovskites has helped improving the stability of the perovskites (which are prone to decomposing over time – one of the main problems researchers are facing). 

With the addition of the guanidinium, perovskite solar cells are already working at 19% efficiency for 1000 hours under full-sunlight testing conditions – with silicon solar cells plateauing at around 25% due to the Shockley-Queisser limit. For that reason, we’re pouring money into finding an alternative to silicon solar cells – and it looks like perovskite has the potential to take over. Exciting times – watch this space and we’ll continue following the research and keeping you updated! 

 

Read More Solar News:

Perovskite Solar Cell Efficiency

Perovskite solar cell research is continuing at a fantastic rate, with the March issue of academic journal Science reporting that a collaboration between UNIST (Ulsan National Institute of Science and Technology) and the Korean Research Institute of Chemical Technology (KRICT) was able to reach 21.2% efficiency with a hybrid organic/inorganic perovskite solar cell.

Perovskite (wiki), a raw material which can be used to harvest solar energy and can be combined with liquid solutions to allow broad application (i.e. the conventional rigid shape of the solar panel could be superseded by something like a ‘spray’ application of a perovskite-based solution), is paving the way for solar technology. Researchers at the ANU (Australian National University) have achieved 26.4% efficiency using a stacked configuration of silicon and perovskite solar cells. The Duong from ANU’s Research School of Engineering heralded the achievement as ‘…a step closer to a low-cost alternative (to silicon based cells)’. It’s important to note that this efficiency was created ANU’s cell size was 0.18cm² (a research size – far from commercially viable). UNSW achieved 12% efficiency for a ‘full size’ 16cm² solar cell last December. Solliance, a Dutch/German/Belgian R&D team, achieved 12.6% in R2R (roll to roll) perovskite solar cells in March.

Perovskite Solar
Perovskite (image: Wikipedia.com)

Although still a far way from the 26.3% efficiency achieved by the Kaneka Corporation using silicon solar panels, it’s important to note that due to the Shockley-Queisser limit silicon panels will never reach greater than 1/3 efficiency. Using perovskite to manufacture solar cells could potentially double this limit – with the added bonus of being inexpensive and using less energy to manufacture. The hybrid organic/inorganic perovskite solar cell discussed at the start of this article (iodine/lead/methyl-ammonium crystalline structure) boosts the efficiency of the panel so that it can carry 2/3 of the energy from light without losing so much to heat.

The fact that this compound can also be applied through myriad techniques such as spraying, dipping, printing, and doctor-blading means that it has a much wider range of application. ‘Solar cells are no longer limited to rigid structures such as panels’, says Dr Anita Ho-baillie, head of Perovskite Solar Cell Research at the Australian Centre for Advanced Photovoltaics (ACAP) at UNSW.

Perovskite’s potential in terms of solar cells was first discovered by Japanese researchers in 2006 and Dr Ho-Baillie says she thinks perovskite solar cell efficiency will be able to reach 24% by the end of the year. There’s still a long way to go for perovskite to surpass silicon as the material of choice for solar cells, but progress is steady and as soon as they break the ‘magical’ 30% barrier it’ll become the material of choice for solar panels, if not before.

 

Read More Solar News: